Joint Filter and Waveform Design for Radar Stap in Signal Dependent Interference (preprint)
نویسندگان
چکیده
Waveform design is a pivotal component of the fully adaptive radar construct. In this paper we consider waveform design for radar space time adaptive processing (STAP), accounting for the waveform dependence of the clutter correlation matrix. Due to this dependence, in general, the joint problem of receiver filter optimization and radar waveform design becomes an intractable, non-convex optimization problem, Nevertheless, it is however shown to be individually convex either in the filter or in the waveform variables. We derive constrained versions of: a) the alternating minimization algorithm, b) proximal alternating minimization, and c) the constant modulus alternating minimization, which, at each step, iteratively optimizes either the STAP filter or the waveform independently. A fast and slow time model permits waveform design in radar STAP but the primary bottleneck is the computational complexity of the algorithms. Index Terms Waveform design, waveform scheduling, space time adaptive radar, Capon beamformer, constant modulus, convex optimization, alternating minimization, regularization, proximal algorithms.
منابع مشابه
Low probability of intercept-based adaptive radar waveform optimization in signal-dependent clutter for joint radar and cellular communication systems
In this paper, we investigate the problem of low probability of intercept (LPI)-based adaptive radar waveform optimization in signal-dependent clutter for joint radar and cellular communication systems, where the radar system optimizes the transmitted waveform such that the interference caused to the cellular communication systems is strictly controlled. Assuming that the precise knowledge of t...
متن کاملReduced-Rank STAP for Airborne Radar Based on Switched Joint Interpolation, Decimation and Filtering Algorithm
We present an adaptive reduced-rank signal processing technique for airborne phased array radar applications. The proposed method performs dimensionality reduction by using a reduced-rank switched joint interpolation, decimation and filtering algorithm (RR-SJIDF). A multiple-processing-branch (MPB) framework, which contains a set of jointly optimized interpolation, decimation and filtering unit...
متن کاملPerformance Improvement of Radar Target Detection by Wavelet-based Denoising Methods
With progress in radar systems, a number of methods have been developed for signal processing and detection in radars. A number of modern radar signal processing methods use time-frequency transforms, especially the wavelet transform (WT) which is a well-known linear transform. The interference canceling is one of the most important applications of the wavelet transform. In Ad-hoc detection met...
متن کاملPerformance Improvement of Radar Target Detection by Wavelet-based Denoising Methods
With progress in radar systems, a number of methods have been developed for signal processing and detection in radars. A number of modern radar signal processing methods use time-frequency transforms, especially the wavelet transform (WT) which is a well-known linear transform. The interference canceling is one of the most important applications of the wavelet transform. In Ad-hoc detection met...
متن کاملDesign of MIMO radar waveform covariance matrix for Clutter and Jamming suppression based on space time adaptive processing
This paper studies the optimization of waveform covariance matrix (WCM) for airborne multiple-input-multiple-output (MIMO) radar systems in the presence of clutter and jamming. The goal is to enhance the target detection performance by suppressing the clutter and jamming based on space time adaptive processing (STAP). We employ the signal-to-interference-plus-noise ratio (SINR) as the figure of...
متن کامل